

PillarHall®

METROLOGY TOOLBOX FOR ALD PROCESSING IN HIGH ASPECT RATIO STRUCTURES

+

0

- Anish Philip, ALD Scientist
- Email: <u>anish.philip@chipmetrics.com</u>
- Tel +358 50 539 7516
- www.chipmetrics.com

Short intro

Senior ALD Scientist Chipmetrics

2018-2022 : Postdoc (ALD-MLD, Aalto) 2022- : Chipmetrics

Flexible magnets

Philip, A et al., ChemNanoMat 7,1(2021)

Philip, A et al., ACS Appl. Mater. Interfaces 12, 21912 (2020)

Metallic and intermetallic thin films

Photoresponsive materials

Philip, A et al., J.Mater. Chem. C 10, 294 (2022)

Khayyami, A et al., Angew. Chemie Int. Ed. 58, 13400(2019)

High aspect ratio (HAR) structures demands in today's microelectronics

Complex 3D geometry & Miniaturization of devices

Through-silicon vias

https://www.nist.gov/image/3d-hmc-pic1jpg

3D DRAM

H Singh. Overcoming challenges in 3D NAND volume manufacturing(https://sst.semiconductor-digest.com), 2017

https://anysilicon.com/overview-and-types-of-capacitors-in-asic-design/

3D Thin Film Metrology

Cross-sectional sampling Destructive. Slow. Expensive.

Gutsche, Future Fab Intl. Issue 14 George, plenary talk, AVS-ALD 2013

- □ Expensive analytical tools, FIB+HRSEM/TEM: 5-20 M€
- □ Service/labour fee: 1000-3500 €/slice
- □ Time to result: 1 day to few weeks
- □ Tiny area measurement
- □ AR limitations; AR max 50:1 for dry etched vertical cavity

PillarHall LHAR method

PillarHall®

Cost effective, user friendly and better accuracy

- No cross-section
- Compatible to conventional lab tools
- \Box Time to result: < 5 min
- Extreme high aspect ratio trenches for highly accurate data (AR up to 10000)
- □ Large area and wafer level imaging

PillarHall®

HIPMETRICS

Lateral High Aspect Ratio (LHAR) **Test Structure and Method**

Product and Delivery

- PillarHall LHAR4 and Chipmetrics VHAR1
- Chip size: 15x15 mm
- MOQ: 5 chips in vacuum release tray (VRT) box

Som

• Delivery time: within 7 days from our inventory

PillarHall chips; From Chipmetrics to your process monitoring

ALD/CVD deposition

Chip Layout LHAR4

PillarHall®

Chip Layout LHAR4

LHAR test structures and their positions on the chip.

LHAR Structure ID	2- directional LHAR	Gap lenght (L), μm	Opening width (w), μm	Aspect Ratio AR (L/H)
W100 L5024	No	5024	100	10 048 : 1
W90 L1020	Yes	1000	90	2 000 : 1
W80 L520	Yes	520	80	1 040 : 1
W70 L120	Yes	120	70	240 : 1
W60 L70	Yes	70	60	140 : 1
W50 L40	Yes	40	50	80 : 1
W40 L11	Yes	11	40	22 : 1
W30 L5	Yes	5	30	10 : 1
W20 L1	Yes	1	20	2:1
W5 L120	Yes	120	5	240 : 1

Combines all planar surface analytical tools

Thickness>15 nm, microscope imaging

Conformality vary with thin film processes

Combines all planar surface analytical tools

Line-scan reflectometer (UV-Vis-NIR)

Top-view SEM

Structural or elemental composition measurement possibility

https://chipmetrics.com/2022/11/15/kokusai-electric-relies-on-patterned-3d-substrates-in-thin-film-process-metrology/

Wafer-level process monitoring

Wafer level conformality Using LHAR chips

The film penetration depth measured from PillarHall LHAR4 chips in seven locations on the carrier wafer

Pocket wafers for semiconductor processes

- Wafer size 300 mm, 200 mm, 150 mm
- 9 pockets for 15x15 mm test chips
- Chips bonded with liquid-glass adhesive
- Compatible up to 450 deg process temperature

PREDICT THE CONFORMALITY IN THE TARGET 3D STRUCTURES

HAR Comparison Tool v2.9

TRENCH TO TRENCH COMPARISON

TRENCH TO HOLE COMPARISON

DESIGN OF EXPERIMENT TOOL

PD Calculator with Thickness									
PillarHall			Target Hole						
Gap Height	Measured Film	Measured PD	Diameter (nm)	Estimated P					
(nm)	Thickness (nm)	(μm)		(μm)					
W _{PH}	d _{PH}	L _{PH}	w _T	LT					
500	20	100	200	17,4					

PillarHall Result Predictor Using Target Design Parameters									
Target Hole			PillarHall						
				Equivalent		Measured			
Diameter (nm)	PD length	Film Thickness	Gap Height	Film Thickness	PD (μm)	Film Thickness	PD (μm)		
	(μm)	(nm)	(nm)	(nm)		(nm)			
w _T	L _T	d _τ	W _{PH}	d _{PH}	L _{PH}	d _{PH}	L _{PH2}		
50	20	5	500	100,0	400,0	25	450,0		

Benefits of PillarHall Technology

- R&D: Design tool for the next generation 3D device process libraries
- Process monitoring for ALD, ALE, CVD and MLD

Fast data source enables

- FAB: Response fast to process failures and avoid losses
- FAB & R&D: Fast repeated measurement when needed

Easy to use

• FAB & R&D: Process engineer learning cycle focuses on unit process – not complex measurement tools

Market Leader of Test Chips for 3D Thin Films

www.Chipmetrics.com

+358 40 753 7415 Yliopistokatu 7, Joensuu, Finland

> #PillarHall #TestedWithPillarHall

